Twitter – US Presidential Campaigns, Nov 7, 2015: Heat Map

Screen Shot 2015-11-07 at 11.28.09 PM (2)

This heat map visualizes the US Presidential Campaigns on Twitter as of November 7, 2015. Darkest blue indicates the highest value. Grey indicates the lowest value.

Takeaways:

  • Bernie Sanders receives the most engagement per Tweet
  • Donald Trump Tweets the most of any candidate
  • Donald Trump and Hillary Clinton have the most Followers
  • Hillary Clinton, Ben Carson, Jeb Bush, and Chris Christie have curated new Twitter feeds for the 2016 election, as indicated by low Total Tweets
  • With the exception of Donald Trump, the Democrats rank highest across the board, indicating digital competency
  • With the exception of Carly Fiorina, all candidates Tweet a moderate amount per day

Moral Foundations: Reddit Political Communities

Moral Foundations Theory is a social psychological theory intended to explain the origins of and variation in human moral reasoning. The theory proposes moral foundations such as fairness, care, in-group, authority, and purity, and has been popularized by psychologist Jonathan Haidt in his book The Righteous Mind.

Haidt describes human morality as it relates to politics and proposes differences between conservatives and liberals as they relate to the moral foundations (TED Talk). Specifically, whereas conservatives appeal to fairness, care, in-group, authority, and purity equally, liberals appeal to fairness and care more than they appeal to in-group, authority, and purity.

Setting out to observe this phenomenon within Reddit Political Communities, I performed word frequency analyses on the /r/Republican and /r/Democrats corpora, totaling the words for each moral foundation, as defined by the LIWC dictionary. Comparing the totals, I found a trend consistent with Moral Foundations Theory. The visualization shows the moral foundations for /r/Democrats normalized against those for /r/Republican, with each value for /r/Republican set at 100%.

reddit_moralfoundations

Targeting an Audience, Mapping a Tour: Luther Dickinson

In this post, we will map Luther Dickinson’s US twitter followers, by count and influence, and examine how these distributions match his band’s upcoming tour routing, with the intent to demonstrate the value of twitter data for targeting audiences and planning performances.

Screen Shot 2015-08-11 at 10.37.43 PM

Luther Dickinson is the lead guitarist and vocalist for the North Mississippi Allstars. As of August 11, 2015, Luther has 1010 twitter followers. Of these 1010 followers, 483 identify their location as based in the US (not all followers identify location). The map below shows the concentrations of US followers, with the greatest numbers in darkest blue.

Followers

lutherdickinson follower map

Top 10 states by follower count (darkest blue):

State Followers
Tennessee 78
Mississippi 60
California 45
New York 35
Pennsylvania 25
Georgia 22
Colorado 20
Louisiana 18
Washington 17
Illinois 15


Now we will map Luther’s followers by influence, i.e. the followers of Luther’s followers. In other words, if each of Luther’s followers retweeted, how many individuals would see the retweet?

Influence

luterhdickinson_follower_influenceTop 10 states by influence (darkest blue):

State Influence
California 1137586
Tennessee 479783
New York 70690
Georgia 64776
Louisiana 63685
Mississippi 59011
Illinois 35373
Colorado 29206
Texas 26612
Rhode Island 23377

We see differences between followers and influence, with Mississippi, Pennsylvania, and Washington hosting greater concentrations of followers, who have less influence. Conversely, we see Rhode Island and Texas hosting lower concentrations of followers, who have more influence. California and Tennessee are strong points for both followers and influence.

Let’s see if this aligns with Luther’s plans for Fall 2015.

According to www.nmallstars.com, the band will tour the following cities in October 2015:

10.1 – San Francisco, CA
10.2 – San Francisco, CA
10.3 – Los Angeles, CA
10.4 – Anaheim, CA
10.5 – Solana Beach, CA
10.6 – Las Vegas, NV
10.9 – Boulder, CO
10.10 – Denver, CO
10.12 – Chicago, IL
10.13 – Pittsburgh, PA
10.14 – Washington D.C.
10.15. – Glenside, PA
10.16 – New York, NY
10.17 – Boston, MA
10.24 – Placerville, CA
10.25 – Placerville, CA

While we do not see a Tennessee performance during the stretch, all dates besides for two, in Las Vegas and Boston, match the list for top 10 states by followers. Furthermore, we see almost half of the performances, 44%, in California, a strong point for both followers and influence. We view this as strong support for the value of twitter data in targeting audiences and planning performances.

Luther’s map serves as a guide for up and coming artists within the genre. Using the raw data, one could target influencers within each state who would welcome the genre.

To this point, I envision developing a platform that leverages twitter data to help artists better identify audiences and geographic strong points within the genre. If you are an artist, manager, data scientist, or entrepreneur, and are interested in this work, contact me at andrewshamlet@gmail.com 

Gauging US Politics with Reddit

Reddit is an entertainment, social networking, and news site where registered users can vote submissions up or down in a bulletin board-like fashion . Content entries are organized by areas of interest called “subreddits.” This post uses subreddits /r/Republican and /r/Democrats to analyze US Politics as of July 22, 2015.

Thanks to Dr. Randal Olson and his reddit-analysis script, we crawled /r/Republican and /r/Democrats. Making word clouds, we visualize word frequency, largest to smallest by count.

/r/Republican

redditrepublicanwordcloud

/r/Democrats

redditdemocratswordcloudThe word clouds provide a high level view of the subreddits. Now let’s dive in to gain insight!

/r/Republican has 16,942 readers, and /r/Democrats has 15,152.

During the timespan 6/22/15 – 7/22/15, 86,609 words appeared in /r/Republican and 73,156 words appeared in /r/Democrats. We will compare word frequency as % of total. In the event of significant difference, the greater of the two will be bolded.

/r/Republican % of total /r/Democrats % of total
“Good” 0.11 0.20
“Bad” 0.06 0.10
 /r/Republican % of total  /r/Democrats % of total
“Love” 0.05 0.05
“Hate” 0.05 0.05
 /r/Republican % of total   /r/Democrats % of total
“GOP” 0.07 0.27
“Fox” 0.02 0.08
 /r/Republican % of total  /r/Democrats % of total
“Trump” 0.30 0.15
“Hillary” 0.07 0.28
  /r/Republican % of total  /r/Democrats % of total
“Obama” 0.12 0.18
“Bush” 0.07 0.13
 /r/Republican % of total  /r/Democrats % of total
“Country” 0.11 0.14
“States” 0.14 0.07
 /r/Republican % of total  /r/Democrats % of total
“Students” 0.04 0.00
“School” 0.04 0.02
 /r/Republican % of total  /r/Democrats % of total
“Gay” 0.06 0.09
“Marriage” 0.10 0.13
 /r/Republican % of total  /r/Democrats % of total
“Inequality” 0.01 0.02
“Equality” 0.00 0.03
 /r/Republican % of total  /r/Democrats % of total
“White” 0.06 0.10
“Black” 0.04 0.04
 /r/Republican % of total  /r/Democrats % of total
“Health” 0.02 0.10
“Insurance” 0.03 0.05
 /r/Republican % of total  /r/Democrats % of total
“Workers” 0.02 0.04
“Unions” 0.05 0.01
 /r/Republican % of total  /r/Democrats % of total
“Gun” 0.05 0.04
“Control” 0.03 0.10
 /r/Republican % of total  /r/Democrats % of total
“Minimum” 0.02 0.06
“Wage” 0.02 0.08
 /r/Republican % of total  /r/Democrats % of total
“Church” 0.06 0.01
“Religion” 0.01 0.01

While we’ll let you come to your own conclusions, here are the insights we found surprising:

  • Greater Frequency of “GOP” and “Fox” in /r/Democrats
  • Greater Frequency of “Students” in /r/Republicans
  • Greater Frequency of “White” in /r/Democrats
  • Greater Frequency of “Union” in /r/Republicans

That’s it for now. Please comment with additional insights or reach out directly at:

andrewshamlet@gmail.com