If they Google You, Do you Win?

In a way, this election is a referendum on “do actions speak louder than words”, is what people do in the privacy of their internet browsing more reflective of their future behavior than what they tell pollsters? And while I have focused on twitter as a barometer of public opinion, there are other data sources that could signal the private thoughts and future actions of voters. The linked NYT article, “If they Google you, Do you Win?”, mentions using the Google queries “Trump Clinton” vs. “Clinton Trump” as signals of voter interest, with the respective queries reflecting bias towards the candidate listed first, i.e. “Clinton Trump” would reflect bias towards Clinton. Using this methodology, I researched Google trends for Battleground states to see where public opinion may be. The data are displayed below.


For the month of October 2016, “Trump Clinton” leads “Clinton Trump” in every state with the exception of Nevada.

You might say Trump is a polarizing celebrity, and for that reason he may be top of mind even if the individual plans to vote for Clinton. Okay, well then let’s penalize Trump 10%. Even in that case, ‘Factored “Trump Clinton”‘ indicates that, with the exception of Nevada, the three states that are in play are Virginia, Iowa, and Florida.

So while it is unclear in which direction the election will result, I believe we may be surprised at how close the results turn out to be, and that one thing we may remember is the discrepancy between what was reported in the polls leading up to the election and what actually happened online. We only have 4 days left to see which source provides a clearer signal of truth, and until then….Good luck to both candidates!

Up to +0.9 Correlation between Twitterwonk Scores and National Polls

455906_2bf3212686734defb5f3b366a29c3c86 I have found, on average, a +0.6 correlation between Twitterwonk Scores and national polls. Of the four leading candidates, Bernie Sanders (displayed) shows the highest correlation, +0.9. The national poll data used in the analysis is from fivethirtyeight. The findings suggest Twitterwonk can be used as a substitute to traditional national polling methods, which are resource intensive and delayed in reporting. While national polls are not always predictive of state primary results, they play a big role in media coverage. 

Targeting an Audience, Mapping a Tour: Luther Dickinson

In this post, we will map Luther Dickinson’s US twitter followers, by count and influence, and examine how these distributions match his band’s upcoming tour routing, with the intent to demonstrate the value of twitter data for targeting audiences and planning performances.

Screen Shot 2015-08-11 at 10.37.43 PM

Luther Dickinson is the lead guitarist and vocalist for the North Mississippi Allstars. As of August 11, 2015, Luther has 1010 twitter followers. Of these 1010 followers, 483 identify their location as based in the US (not all followers identify location). The map below shows the concentrations of US followers, with the greatest numbers in darkest blue.


lutherdickinson follower map

Top 10 states by follower count (darkest blue):

State Followers
Tennessee 78
Mississippi 60
California 45
New York 35
Pennsylvania 25
Georgia 22
Colorado 20
Louisiana 18
Washington 17
Illinois 15

Now we will map Luther’s followers by influence, i.e. the followers of Luther’s followers. In other words, if each of Luther’s followers retweeted, how many individuals would see the retweet?


luterhdickinson_follower_influenceTop 10 states by influence (darkest blue):

State Influence
California 1137586
Tennessee 479783
New York 70690
Georgia 64776
Louisiana 63685
Mississippi 59011
Illinois 35373
Colorado 29206
Texas 26612
Rhode Island 23377

We see differences between followers and influence, with Mississippi, Pennsylvania, and Washington hosting greater concentrations of followers, who have less influence. Conversely, we see Rhode Island and Texas hosting lower concentrations of followers, who have more influence. California and Tennessee are strong points for both followers and influence.

Let’s see if this aligns with Luther’s plans for Fall 2015.

According to www.nmallstars.com, the band will tour the following cities in October 2015:

10.1 – San Francisco, CA
10.2 – San Francisco, CA
10.3 – Los Angeles, CA
10.4 – Anaheim, CA
10.5 – Solana Beach, CA
10.6 – Las Vegas, NV
10.9 – Boulder, CO
10.10 – Denver, CO
10.12 – Chicago, IL
10.13 – Pittsburgh, PA
10.14 – Washington D.C.
10.15. – Glenside, PA
10.16 – New York, NY
10.17 – Boston, MA
10.24 – Placerville, CA
10.25 – Placerville, CA

While we do not see a Tennessee performance during the stretch, all dates besides for two, in Las Vegas and Boston, match the list for top 10 states by followers. Furthermore, we see almost half of the performances, 44%, in California, a strong point for both followers and influence. We view this as strong support for the value of twitter data in targeting audiences and planning performances.

Luther’s map serves as a guide for up and coming artists within the genre. Using the raw data, one could target influencers within each state who would welcome the genre.

To this point, I envision developing a platform that leverages twitter data to help artists better identify audiences and geographic strong points within the genre. If you are an artist, manager, data scientist, or entrepreneur, and are interested in this work, contact me at andrewshamlet@gmail.com